Lecture 3

Binary Search Trees (contd.)



Inorder Tree Walk: Proof of Correctness



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7'in sorted order.



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7'in sorted order.

Proof:



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7'in sorted order.

Proof: Basis Step:



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step:

Inductive Step:



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.
Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step:



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

\

Inductive Hypothesis (IH)



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.
Inductive Step: Assume the statement is true for all the BSTs with < k nodes.

Let 7 be a BST with kK + 1 nodes. \

Inductive Hypothesis (IH)



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7 be a BST with £ + 1 nodes.



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7 be a BST with £ + 1 nodes.

Then, Inorder-Tree-Walk(1' . root) will:



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7 be a BST with £ + 1 nodes.

T . root

N

T .root.left

N\

T .root.right

“

Then, Inorder-Tree-Walk(1' . root) will:



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7 be a BST with £ + 1 nodes.

T . root

N

T .root.left

N\

T .root.right

“

Then, Inorder-Tree-Walk(1' . root) will:



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7 be a BST with £ + 1 nodes.

T . root

N

T .root.left

N\

T .root.right

“

Then, Inorder-Tree-Walk(1' . root) will:

First print keys here in sorted order Pt



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7 be a BST with £ + 1 nodes.

T . root

N

T .root.left

N\

T .root.right

“

Then, Inorder-Tree-Walk(1' . root) will:

First print keys here in sorted order Pt
("." IH and this subtree has < k keys)



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7"in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7' be a BST with k + 1 nodes. Then print T'. root . key T root

N~

T .root.left

N\

T .root.right

“

Then, Inorder-Tree-Walk(1' . root) will:

First print keys here in sorted order Pt
("." IH and this subtree has < k keys)



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7'in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7' be a BST with k + 1 nodes. Then print T'. root . key T root

N~

T .root.left

N\

T .root.right

"

Then, Inorder-Tree-Walk(1' . root) will:

First print keys here in sorted order Pt
("." IH and this subtree has < k keys)



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7'in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7' be a BST with k + 1 nodes. Then print T'. root . key T root

N~

T .root.left

N\

T .root.right

"

Then, Inorder-Tree-Walk(1' . root) will:

First print keys here in sorted order Pt \

(. 1H and this subtree has < k keys) Then print keys here in sorted order



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7'in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7' be a BST with k + 1 nodes. Then print T'. root . key T root

N~

T .root.left

N\

T .root.right

"

Then, Inorder-Tree-Walk(1' . root) will:

First print keys here in sorted order Pt \

(. 1H and this subtree has < k keys) Then print keys here in sorted order

("." IH and this subtree has < k keys)



Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk(7 . root) will print the keys of the BST 7'in sorted order.

Proof: Basis Step: Statement is trivially true when BST contains only one node.

Inductive Step: Assume the statement is true for all the BSTs with < k£ nodes.

Let 7' be a BST with k + 1 nodes. Then print T'. root . key T root

N~

T .root.left

N\

T .root.right

"

Then, Inorder-Tree-Walk(1' . root) will:

First print keys here in sorted order Pt \

(. 1H and this subtree has < k keys) Then print keys here in sorted order

("." IH and this subtree has < k keys) m



Inorder Tree Walk: Time Analysis

Inorder-Tree-Walk(x):

1. ifx # NIL

2 Inorder-Tree-Walk(x . [eft)
3. print x . key

4 Inorder-Tree-Walk(x . right)



Inorder Tree Walk: Time Analysis

Inorder-Tree-Walk(x):

1. ifx # NIL

2 Inorder-Tree-Walk(x . [eft)
3. print x . key

4 Inorder-Tree-Walk(x . right)

Runtime: ®(n), where n is the # of nodes in the tree.




Inorder Tree Walk: Time Analysis

Inorder-Tree-Walk(x):

1. ifx # NIL

2 Inorder-Tree-Walk(x . [eft)
3. print x . key

4 Inorder-Tree-Walk(x . right)

Runtime: ©(n), where 7 is the # of nodes in the tree. Because each node gets printed only once.



Inorder Tree Walk: Time Analysis

Inorder-Tree-Walk(x):

1. ifx # NIL

2 Inorder-Tree-Walk(x . [eft)
3. print x . key

4 Inorder-Tree-Walk(x . right)

Runtime: ©(n), where 7 is the # of nodes in the tree. Because each node gets printed only once.

/

Can be proven using induction.



Search in a BST



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

lHHlustration:



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

lllustration: Searching for 12 in the below BST.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

lllustration: Searching for 12 in the below BST.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

lllustration: Searching for 12 in the below BST.

v



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

lllustration: Searching for 12 in the below BST.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

lllustration: Searching for 12 in the below BST.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

lllustration: Searching for 12 in the below BST.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

lllustration: Searching for 12 in the below BST.

O OO O
v
Found it! @ @



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Illustration: Searching for 5 in the below BST.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Illustration: Searching for 5 in the below BST.

v



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Illustration: Searching for 5 in the below BST.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Illustration: Searching for 5 in the below BST.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Illustration: Searching for 5 in the below BST.

S is not present!



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):
1. while x # NIL and k£ # x. key



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):
1. while x # NIL and k£ # x. key
2. if k < x.key



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2 if k < x.key

3. x=x.left

4 else



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):
1. while x # NIL and k£ # x. key

2. if k < x.key
3. x=x.left
4. else

5. X =x.right



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k): A

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key £ in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x

x = NIL



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key k in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key k in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x

Runtime: ®(/), where /1 = height of T,



Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key k in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x

Runtime: O(/1), where /1 = height of T, as while loop goes one level down with every iteration.



Finding Successor in a BST



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

lHHlustration:



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHHlustration: Find the successor of 6 in the below BST.



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHHlustration: Find the successor of 6 in the below BST.



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHHlustration: Find the successor of 6 in the below BST.

Allowing duplicate keys



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHHlustration: Find the successor of 6 in the below BST.



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHHlustration: Find the successor of 6 in the below BST.

@ Recall:
Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHHlustration: Find the successor of 6 in the below BST.

@ Recall:
Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)

@ @ Suppose 6 is just printed in Inorder walk.
What will happen next?



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHHlustration: Find the successor of 6 in the below BST.

@ Recall:
Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

* 2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)

@ @ Suppose 6 is just printed in Inorder walk.
What will happen next?



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHHlustration: Find the successor of 6 in the below BST.

@ Recall:
Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)
@ @ Suppose 6 is just printed in Inorder walk.

What will happen next?



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHHlustration: Find the successor of 6 in the below BST.

@ Recall:
Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)

Found it! @ @ Suppose 6 is just printed in Inorder walk.
| What will happen next?



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

lHHlustration:

@ Recall:
Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHllustration: Find the successor of the leaf 15 in the below BST.

@ Recall:
Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHllustration: Find the successor of the leaf 15 in the below BST.

@ Recall:
Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

2
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)
@ @ Suppose 135 is just printed in Inorder walk.

What will happen next?



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHllustration: Find the successor of the leaf 15 in the below BST.

@ Recall:
Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

* 2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)

@ @ Suppose 135 is just printed in Inorder walk.
What will happen next?



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHllustration: Find the successor of the leaf 15 in the below BST.

* @ Recall:
Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)

@ @ Suppose 135 is just printed in Inorder walk.
What will happen next?



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHllustration: Find the successor of the leaf 15 in the below BST.

v
@ Recall:

Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)

@ @ Suppose 135 is just printed in Inorder walk.
What will happen next?



Finding Successor in a BST

—— Node printed after x in inorder-walk.
Goal: Given a node x of a BST find its successor.

IHllustration: Find the successor of the leaf 15 in the below BST.

Found it!
@ Recall:

Inorder-Tree-Walk(x):
e @ 1. ifx # NIL

Inorder-Tree-Walk(x . left)

2.
3. print x . key
G @ @ @ 4. Inorder-Tree-Walk(x . right)

@ @ Suppose 135 is just printed in Inorder walk.
What will happen next?



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):
1. ifx.right # NIL



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):
1. ifx.right # NIL

2. return Tree-Minimum(x . right)



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):
1. ifx.right # NIL

2. return Tree-Minimum(x . right)
3. else



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):
1. ifx.right # NIL
2. return Tree-Minimum(x . right)
3. else

4. y=X.p



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):

1. ifx.right # NIL

2 return Tree-Minimum(x . right)
3. else

4. y=X.p
5 while y # NIL and x # y . left



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):

while y # NIL and x # y . left
X=Y,y=Y.p

1. ifx.right # NIL

2. return Tree-Minimum(x . right)
3. else

4. y=X.p

D.

6.



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):

X=YY=Y.P
return y

1. ifx.right # NIL

2. return Tree-Minimum(x . right)
3. else

4. y=X.p

5. while y # NIL and x # y . left

6.

/.



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):

1. ifx.right # NIL

2. return Tree-Minimum(x . right)

3. else

4. y=X.p

5. while y # NIL and x # y . left G
6. X=Y,y=Yy.p

/. return y



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):

1. ifx.right # NIL

2. return Tree-Minimum(x . right)

3. else

4. y=X.p

5. while y # NIL and x # y . left G
6. X=Y,y=Yy.p

/. return y



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):

1. ifx.right # NIL

2. return Tree-Minimum(x . right)

3. else

4. y=X.p

5. while y # NIL and x # y . left G
6. X=Y,y=Yy.p

/. return y



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in 7.

Tree-Successor(x):

1. ifx.right # NIL

2. return Tree-Minimum(x . right)

3. else

4. y=X.p

5. while y # NIL and x # y . left G
6. X=Y,y=Yy.p

/. return y



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in 7.

Tree-Successor(x):

1. ifx.right # NIL

2. return Tree-Minimum(x . right)

3. else

4. y=X.p

5. while y # NIL and x # y . left G
6. X=Y,y=Yy.p

/. return y



Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in 7.

Tree-Successor(x):

Runtime: ®(4), where /1 = height of T.

1. ifx.right # NIL

2. return Tree-Minimum(x . right)

3. else

4. y=X.p

5. while y # NIL and x # y . left G
6. X=Y,y=Yy.p

/. return y



