
Lecture 3

Binary Search Trees (contd.)

Inorder Tree Walk: Proof of Correctness

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof:

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Inductive Hypothesis (IH)

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Inductive Hypothesis (IH)

Let be a BST with nodes. T k + 1

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Then, Inorder-Tree-Walk will:(T . root)

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Then, Inorder-Tree-Walk will:(T . root)

T . root

T . root . rightT . root . left

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Then, Inorder-Tree-Walk will:(T . root)

T . root

T . root . rightT . root . left

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Then, Inorder-Tree-Walk will:(T . root)

T . root

T . root . rightT . root . left

First print keys here in sorted order

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Then, Inorder-Tree-Walk will:(T . root)

T . root

T . root . rightT . root . left

First print keys here in sorted order
(IH and this subtree has keys)∵ ≤ k

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Then, Inorder-Tree-Walk will:(T . root)

T . root

T . root . rightT . root . left

First print keys here in sorted order

Then print T . root . key

(IH and this subtree has keys)∵ ≤ k

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Then, Inorder-Tree-Walk will:(T . root)

T . root

T . root . rightT . root . left

First print keys here in sorted order

Then print T . root . key

(IH and this subtree has keys)∵ ≤ k

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Then, Inorder-Tree-Walk will:(T . root)

T . root

T . root . rightT . root . left

First print keys here in sorted order

Then print keys here in sorted order

Then print T . root . key

(IH and this subtree has keys)∵ ≤ k

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Then, Inorder-Tree-Walk will:(T . root)

T . root

T . root . rightT . root . left

First print keys here in sorted order

Then print keys here in sorted order

Then print T . root . key

(IH and this subtree has keys)∵ ≤ k

(IH and this subtree has keys)∵ ≤ k

Inorder Tree Walk: Proof of Correctness

Claim: Inorder-Tree-Walk will print the keys of the BST in sorted order.(T . root) T

Proof: Basis Step:

Inductive Step:

Statement is trivially true when BST contains only one node.

Assume the statement is true for all the BSTs with nodes.≤ k

Let be a BST with nodes. T k + 1

Then, Inorder-Tree-Walk will:(T . root)

T . root

T . root . rightT . root . left

First print keys here in sorted order

Then print keys here in sorted order

Then print T . root . key

(IH and this subtree has keys)∵ ≤ k

(IH and this subtree has keys)∵ ≤ k ◼

Inorder Tree Walk: Time Analysis

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Inorder Tree Walk: Time Analysis

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Runtime: , where is the # of nodes in the tree.Θ(n) n

Inorder Tree Walk: Time Analysis

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Runtime: , where is the # of nodes in the tree.Θ(n) n Because each node gets printed only once.

Inorder Tree Walk: Time Analysis

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Runtime: , where is the # of nodes in the tree.Θ(n) n

Can be proven using induction.

Because each node gets printed only once.

Search in a BST

Search in a BST
Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Search in a BST
Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

Search in a BST
Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration: Searching for in the below BST.12

Search in a BST
Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.12

Search in a BST
Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.12

Search in a BST
Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.12

Search in a BST
Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.12

Search in a BST
Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.12

Search in a BST
Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.12

Found it!

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.5

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.5

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.5

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.5

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Illustration:

10

6

1 9 14 31

25

12 22

Searching for in the below BST.5

 is not present!5

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key
 3. x = x . left

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key
 3. x = x . left
 4. else

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key
 3. x = x . left
 4. else
 5. x = x . right

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key
 3. x = x . left
 4. else
 5. x = x . right
 6. return x

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key
 3. x = x . left
 4. else
 5. x = x . right
 6. return x

k = 8

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key
 3. x = x . left
 4. else
 5. x = x . right
 6. return x

10

6

1 9

25

k = 8

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key
 3. x = x . left
 4. else
 5. x = x . right
 6. return x

10

6

1 9

25

xk = 8

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key
 3. x = x . left
 4. else
 5. x = x . right
 6. return x

10

6

1 9

25

k = 8

x

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key
 3. x = x . left
 4. else
 5. x = x . right
 6. return x

10

6

1 9

25

k = 8

x

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search : (x, k)
 1. while NIL and x ≠ k ≠ x . key
 2. if k < x . key
 3. x = x . left
 4. else
 5. x = x . right
 6. return x

10

6

1 9

25

k = 8

 NILx =

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search :

 1. while NIL and

 2. if

 3.

 4. else

 5.

 6. return

(x, k)
x ≠ k ≠ x . key

k < x . key
x = x . left

x = x . right
x

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search :

 1. while NIL and

 2. if

 3.

 4. else

 5.

 6. return

(x, k)
x ≠ k ≠ x . key

k < x . key
x = x . left

x = x . right
x

Runtime: , where height of ,Θ(h) h = T

Search in a BST

Goal: Given a pointer to the root of a BST, search for an element with the key in it.k

Algorithm: Call Tree-Search to search for element with key in tree .(T . root, k) k T

 Tree-Search :

 1. while NIL and

 2. if

 3.

 4. else

 5.

 6. return

(x, k)
x ≠ k ≠ x . key

k < x . key
x = x . left

x = x . right
x

Runtime: , where height of ,Θ(h) h = T as while loop goes one level down with every iteration.

Search in a BST

Finding Successor in a BST

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Node printed after in inorder-walk. x

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Illustration:

Node printed after in inorder-walk. x

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Illustration: Find the successor of in the below BST.6

Node printed after in inorder-walk. x

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of in the below BST.6

Node printed after in inorder-walk. x

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of in the below BST.6

Node printed after in inorder-walk. x

Allowing duplicate keys

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of in the below BST.6

Node printed after in inorder-walk. x

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of in the below BST.6

Node printed after in inorder-walk. x

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of in the below BST.6

Node printed after in inorder-walk. x

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Suppose is just printed in Inorder walk.

What will happen next?
6

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of in the below BST.6

Node printed after in inorder-walk. x

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Suppose is just printed in Inorder walk.

What will happen next?
6

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of in the below BST.6

Node printed after in inorder-walk. x

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Suppose is just printed in Inorder walk.

What will happen next?
6

Finding Successor in a BST
Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of in the below BST.6

Node printed after in inorder-walk. x

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Suppose is just printed in Inorder walk.

What will happen next?
6Found it!

Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Finding Successor in a BST
Node printed after in inorder-walk. x

Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of the leaf in the below BST.15

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Finding Successor in a BST
Node printed after in inorder-walk. x

Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of the leaf in the below BST.15

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Finding Successor in a BST
Node printed after in inorder-walk. x

Suppose is just printed in Inorder walk.

What will happen next?
15

Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of the leaf in the below BST.15

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Finding Successor in a BST
Node printed after in inorder-walk. x

Suppose is just printed in Inorder walk.

What will happen next?
15

Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of the leaf in the below BST.15

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Finding Successor in a BST
Node printed after in inorder-walk. x

Suppose is just printed in Inorder walk.

What will happen next?
15

Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of the leaf in the below BST.15

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Finding Successor in a BST
Node printed after in inorder-walk. x

Suppose is just printed in Inorder walk.

What will happen next?
15

Goal: Given a node of a BST find its successor.x

Illustration:

20

6

1 15 22 31

25

12 15

Find the successor of the leaf in the below BST.15

 Inorder-Tree-Walk :

 1. if NIL

 2. Inorder-Tree-Walk

 3. print

 4. Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Finding Successor in a BST
Node printed after in inorder-walk. x

Suppose is just printed in Inorder walk.

What will happen next?
15

Found it!

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)
 1. if NILx . right ≠

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)
 1. if NILx . right ≠
 2. return Tree-Minimum(x . right)

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)
 1. if NILx . right ≠
 2. return Tree-Minimum(x . right)
 3. else

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)
 1. if NILx . right ≠
 2. return Tree-Minimum(x . right)
 3. else
 4. = y x . p

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)
 1. if NILx . right ≠
 2. return Tree-Minimum(x . right)
 3. else
 4. = y x . p
 5. while NIL and y ≠ x ≠ y . left

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)
 1. if NILx . right ≠
 2. return Tree-Minimum(x . right)
 3. else
 4. = y x . p
 5. while NIL and y ≠ x ≠ y . left
 6. = , x y y = y . p

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)
 1. if NILx . right ≠
 2. return Tree-Minimum(x . right)
 3. else
 4. = y x . p
 5. while NIL and y ≠ x ≠ y . left
 6. = , x y y = y . p
 7. return y

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

20

6

1 15 22

25

12 15

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)
 1. if NILx . right ≠
 2. return Tree-Minimum(x . right)
 3. else
 4. = y x . p
 5. while NIL and y ≠ x ≠ y . left
 6. = , x y y = y . p
 7. return y

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

20

6

1 15 22

25

12 15 x

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)
 1. if NILx . right ≠
 2. return Tree-Minimum(x . right)
 3. else
 4. = y x . p
 5. while NIL and y ≠ x ≠ y . left
 6. = , x y y = y . p
 7. return y

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

20

6

1 15 22

25

12 15 x

y

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor : (x)
 1. if NILx . right ≠
 2. return Tree-Minimum(x . right)
 3. else
 4. = y x . p
 5. while NIL and y ≠ x ≠ y . left
 6. = , x y y = y . p
 7. return y

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

20

6

1 15 22

25

12 15

x

y

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor :

 1. if NIL

 2. return Tree-Minimum

 3. else

 4. =

 5. while NIL and

 6. = ,

 7. return

(x)
x . right ≠

(x . right)

y x . p
y ≠ x ≠ y . left

x y y = y . p
y

Goal: Given a node of a BST find its successor.x

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor :

 1. if NIL

 2. return Tree-Minimum

 3. else

 4. =

 5. while NIL and

 6. = ,

 7. return

(x)
x . right ≠

(x . right)

y x . p
y ≠ x ≠ y . left

x y y = y . p
y

Goal: Given a node of a BST find its successor.x

20

6

1 15 22

25

12 15

x

y

Finding Successor in a BST

Algorithm: Call Tree-Successor to find ’s successor in .(x) x T

 Tree-Successor :

 1. if NIL

 2. return Tree-Minimum

 3. else

 4. =

 5. while NIL and

 6. = ,

 7. return

(x)
x . right ≠

(x . right)

y x . p
y ≠ x ≠ y . left

x y y = y . p
y

Goal: Given a node of a BST find its successor.x

20

6

1 15 22

25

12 15

x

y

Runtime: , where height of .Θ(h) h = T

Finding Successor in a BST

