Lecture 3

Binary Search Trees (contd.)
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Inorder-Tree-Walk(x):

1. ifx # NIL

2 Inorder-Tree-Walk(x . [eft)
3. print x . key

4 Inorder-Tree-Walk(x . right)

Runtime: ©(n), where 7 is the # of nodes in the tree. Because each node gets printed only once.

/

Can be proven using induction.
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Goal: Given a pointer to the root of a BST, search for an element with the key £ in it.

Algorithm: Call Tree-Search(7'. root, k) to search for element with key k in tree T.

Tree-Search (x, k):

1. while x # NIL and k£ # x. key
2. if k < x.key

3. x=x.left

4. else

5. X =x.right

6. return x

Runtime: O(/1), where /1 = height of T, as while loop goes one level down with every iteration.
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Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in T.

Tree-Successor(x):

while y # NIL and x # y . left
X=Y,y=Y.p

1. ifx.right # NIL

2. return Tree-Minimum(x . right)
3. else

4. y=X.p

D.

6.
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Finding Successor in a BST

Goal: Given a node x of a BST find its successor.

Algorithm: Call Tree-Successor(x) to find x's successor in 7.

Tree-Successor(x):

Runtime: ®(4), where /1 = height of T.

1. ifx.right # NIL

2. return Tree-Minimum(x . right)

3. else

4. y=X.p

5. while y # NIL and x # y . left G
6. X=Y,y=Yy.p

/. return y



