
Lecture 3

Binary Search Trees (contd.)
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 Inorder-Tree-Walk :           

 1.    if NIL

 2.        Inorder-Tree-Walk 

 3.        print 

 4.        Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Runtime: , where  is the # of nodes in the tree.Θ(n) n

Can be proven using induction.

Because each node gets printed only once.
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Illustration:
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Find the successor of the leaf  in the below BST.15

 Inorder-Tree-Walk :           

 1.    if NIL

 2.        Inorder-Tree-Walk 

 3.        print 

 4.        Inorder-Tree-Walk

(x)
x ≠

(x . left)
x . key

(x . right)

Recall:

Finding Successor in a BST
Node printed after  in inorder-walk. x

Suppose  is just printed in Inorder walk. 

What will happen next?
15

Found it!
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)

Goal: Given a node  of a BST find its successor.x
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)
 1.    if   NILx . right ≠

Goal: Given a node  of a BST find its successor.x
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)
 1.    if   NILx . right ≠
 2.        return Tree-Minimum(x . right)

Goal: Given a node  of a BST find its successor.x
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)
 1.    if   NILx . right ≠
 2.        return Tree-Minimum(x . right)
 3.    else

Goal: Given a node  of a BST find its successor.x
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)
 1.    if   NILx . right ≠
 2.        return Tree-Minimum(x . right)
 3.    else
 4.         = y x . p

Goal: Given a node  of a BST find its successor.x
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)
 1.    if   NILx . right ≠
 2.        return Tree-Minimum(x . right)
 3.    else
 4.         = y x . p
 5.        while   NIL and   y ≠ x ≠ y . left

Goal: Given a node  of a BST find its successor.x
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)
 1.    if   NILx . right ≠
 2.        return Tree-Minimum(x . right)
 3.    else
 4.         = y x . p
 5.        while   NIL and   y ≠ x ≠ y . left
 6.             = ,   x y y = y . p

Goal: Given a node  of a BST find its successor.x

Finding Successor in a BST



Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)
 1.    if   NILx . right ≠
 2.        return Tree-Minimum(x . right)
 3.    else
 4.         = y x . p
 5.        while   NIL and   y ≠ x ≠ y . left
 6.             = ,   x y y = y . p
 7.         return y

Goal: Given a node  of a BST find its successor.x

Finding Successor in a BST
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)
 1.    if   NILx . right ≠
 2.        return Tree-Minimum(x . right)
 3.    else
 4.         = y x . p
 5.        while   NIL and   y ≠ x ≠ y . left
 6.             = ,   x y y = y . p
 7.         return y

Goal: Given a node  of a BST find its successor.x
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)
 1.    if   NILx . right ≠
 2.        return Tree-Minimum(x . right)
 3.    else
 4.         = y x . p
 5.        while   NIL and   y ≠ x ≠ y . left
 6.             = ,   x y y = y . p
 7.         return y

Goal: Given a node  of a BST find its successor.x

Finding Successor in a BST
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           (x)
 1.    if   NILx . right ≠
 2.        return Tree-Minimum(x . right)
 3.    else
 4.         = y x . p
 5.        while   NIL and   y ≠ x ≠ y . left
 6.             = ,   x y y = y . p
 7.         return y

Goal: Given a node  of a BST find its successor.x

Finding Successor in a BST
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           

 1.    if   NIL

 2.        return Tree-Minimum 

 3.    else

 4.         = 

 5.        while   NIL and   

 6.             = ,   

 7.         return 

(x)
x . right ≠

(x . right)

y x . p
y ≠ x ≠ y . left

x y y = y . p
y

Goal: Given a node  of a BST find its successor.x
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           

 1.    if   NIL

 2.        return Tree-Minimum 

 3.    else

 4.         = 

 5.        while   NIL and   

 6.             = ,   

 7.         return 

(x)
x . right ≠

(x . right)

y x . p
y ≠ x ≠ y . left

x y y = y . p
y

Goal: Given a node  of a BST find its successor.x
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Algorithm: Call Tree-Successor  to find ’s successor in .(x) x T

 Tree-Successor :           

 1.    if   NIL

 2.        return Tree-Minimum 

 3.    else

 4.         = 

 5.        while   NIL and   

 6.             = ,   

 7.         return 

(x)
x . right ≠

(x . right)

y x . p
y ≠ x ≠ y . left

x y y = y . p
y

Goal: Given a node  of a BST find its successor.x
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12 15

x

y

Runtime: , where   height of .Θ(h) h = T

Finding Successor in a BST


